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In Z o lattice gauge theory we generalize the Wilson action to include all group representations. 
We review the implications of duality for these models. With Monte Carlo methods, we find a 
rich phase structure for the cases p = 4 and 5. 

1. Introduction 

The lattice formulation has proven to be an extremely fruitful framework for 

non-perturbative studies of gauge fields. Via Monte Carlo calculations with the 
lattice, we now have rather compelling evidence that the asymptotically free 
non-abelian gauge theory of quarks and gluons possesses the phenomenon of 

confinement. Observable free particles are bound states in the singlet representation 
of the gauge group. This is an essential feature for any potential theory of the 

strong interactions. 
As with any ultraviolet regulator, the details of the lattice theory have consider- 

able flexibility. Only in the continuum limit should we recover the presumably 
unique theory of the strong interactions. The original Wilson action [1], being 
conceptually quite simple, has dominated most research in lattice gauge theory. 

Nevertheless, recent studies have shown how modifications of the model can 
produce interesting changes in the resulting phase structure [2]. As these should 
be artifices of the formulation, they only occur when the lattice spacing is not small, 

but rather of a typical hadronic scale. 
Once formulated on a lattice, gauge theories are readily extended to discrete 

gauge groups. These toy models have often provided a useful testing ground for 
techniques in lattice gauge theory. The cyclic groups Zp have been of particular 
interest in that they have a non-trivial phase structure and for large p they approach 
the U(1) lattice gauge theory. Understanding the latter is essential because elec- 
trodynamics is known not to confine and is, after all, the prototype for all gauge 
theories. 

In this paper we study the four-dimensional Zp models with a simple generaliz- 

ation of the Wilson theory. We keep the action as a sum over functions of single 

* This work was performed under the auspices of the US Department of Energy under contract no. 
DE-AC02-76CH00016. 
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plaquette variables, but we consider more general class functions than simply the 
trace of the corresponding fundamental  group matrix. In general, a class function 
may be expanded in characters, i.e., traces in various representations of the group. 
A generalization of SU(2) including only two terms in the character expansion [2] 
gave a rich structure interpolating between the gauge models SU(2), SO(3) and Z2. 

The group Z o has only a finite number  of inequivalent representations. Thus the 
most general plaquette action depends on a finite number  of parameters .  Drouffe 
and Cardy have each discussed the duality properties of the corresponding models 
[3]. Recently Edgar [4] has investigated the gauge models with Monte Carlo methods 
and our paper  should be considered an extension of that work to a wider range of 
couplings. In the process we have found several new transitions. 

Historically, duality has served as a useful tool in the study of the Zp gauge 
models as well as two-dimensional spin systems. The Z2, Z3 and Z4 theories in 
four dimensions are self-dual, giving rise to exact expressions for the temperatures  
of their phase transitions [5]. For p > 5 the Villain action, a slight modification of 
Wilson's, maintains self-duality [6]. However,  here the models have two transitions 
dual to each other [7, 8]. With the most general action we will see some transitions 

on self-dual surfaces and others dual to each other. We will show how the value 
of N at which the single transition of the low-N models splits into two depends 
on the action. In particular, we find an intermediate Coulomb phase for Z4 as well 
as Z5 actions with only a single transition. 

In the next section we will define the general model and the [~p] parameters  on 
which it depends. We will discuss various one parameter  limiting cases. In sect. 3 
we will review the implications of duality for the models. We find interesting 
constraints on the order parameters  of the system when measured on the self-dual 
surfaces. In sect. 4 we present Monte Carlo results on several of the systems. 

2. The generalized Zp action 

As in the usual formulation of lattice gauge theory, our variables are elements 
of the gauge group. One such element is associated with every nearest neighbor 
bond on a four-dimensional periodic hypercubic lattice of N 4 sites. Labeling two 
neighboring sites by i and ], we have an element of Zp 

U~j = (Ui,) 1 ~ Zp = {exp (2rr ik /p ) l k  = 0 . . . . .  p - 1}. (2.1) 

The path integral or partition function is 

Z =  Y. e s't:~, (2.2) 
U ~ Z t, 

where each bond variable is summed over the group. Again as in the usual theory, 
the action is a sum over all e lementary squares or plaquettes on the lattice 

S ( U )  = ~ S. :(U~) . (2.3) 
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Here U~ is the product of the four group elements encountered in a circumnaviga- 

tion of the respective plaquette. So that the orientation of the plaquette be irrelevant, 
we require 

S ~ ( U D )  = S ~ ( U ~  1 ) .  (2.4) 

To interpret e s as a Boltzmann weight we restrict St:  to be real. For a general 
gauge group one usually requires S.~ to be a class function; however, for an abelian 
group such as considered here, all functions are class functions. 

With any gauge group the general plaquette action may be expanded in characters 

S~j(g) = Y~ [3,X, ( g ) ,  (2.5) 
n 

where a', is the trace of Ut : in the nth irreducible representation of the group. For 
Zp there are precisely p representations, all one-dimensional  and given by 

R , ( g ) = g " ,  O < ~ n < ~ p - 1 .  (2.6) 

The representat ion property 

R ,  ( g ) R ,  (g') = R .  (gg')  , (2.7) 

is a trivial consequence of the abelian nature of the group. The representation 
combination rule is simply 

R ,  (g)R,, (g) = R,~,I  (g) ,  (2.8) 

where the index is understood modulo p in this and the following equation. The 
orthogonality of characters is 

1Z R.(g)R,,,(g) = g = &.v  , , .  (2.9) 
P ~  P ~  

Thus we rewrite the parametrizat ion of eq. (2.5): 

p 1 

St j(g)= Y. f l , g " .  (2.10) 
n = O  

The constraint of eq. (2.4) becomes 

[30 , =[3 , .  (2.11) 

The parameter  [30 is a normalization, irrelevant to thermodynamics but convenient 
to keep. Eq. (2.9) inverts the sum in eq. (2.10): 

[3, = p 1 y. g " S n ( g ) .  (2.12) 

For the discussion of duality it will also be convenient to expand the Boltzmann 
weight in characters 

e sl~) = Y . x , g " ,  (2.13) 
n 
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and eq. (2.11) becomes 
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- 1  e S, .~g) x , = p  X g - "  , 
g 

(2.14) 

where 0 is defined by 

As a final limit consider 

iO g = e  . (2.18) 

This model maps onto itself under the duality transformation discussed in the next 
section. Another  self-dual one-parameter action is the p state gauge-Potts model 

defined by [10] 

eS: i ~ =  { 1, g = 1 , 
e -e ,  g # l .  (2.19) 

l 1, g = l ,  
e s ' ~  = e - ° ,  g = e ~2"i/°, (2.20) 

[ 0,  otherwise. 

We refer to this case as the restricted Zp model, wherein all plaquette variables 
must be at or just next to the identity. This forces a strong degree of smoothness 

xp_, = x , .  (2.15) 

The energy shift represented by B0 is arl overall scale factor in the x,. The 

thermodynamics depends on the x, in a projective sense. 
For even p the gauge group contains the element - 1 .  Given any configuration 

of link variables we can find a corresponding one where the sign of U, ~ is changed 
on every plaquette. One such mapping is given in ref. [9]. This implies that the 

thermodynamics of the even p model has a symmetry under 

/3, -, ( -1)"B, .  (2.16) 

Often there are further symmetries in the parameter space, as we will see explicitly 
when we study Zs. 

Various contours in the general coupling space reduce to standard models. The 
original Wilson theory has only the coupling/3 t. For p = 2, 3 and 4 this system has 

a single first-order phase transition at a point where the model is self-dual. At 
p = 5 the model develops two second-order transitions which move apart as p 

increases further [7, 8]. One of these singularities remains in the U(1) limit of 
infinite p and the other moves toward zero temperature inversely with the square 

of p. 
The Villain [6] variation of the Wilson theory considers the one-parameter  action 

e S ~ =  ~ e mo 2,,t~/2, (2.17) 
I " . c ~  
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on the gauge fields and for large p small topological excitations are removed [11]. 
We will see that this restricted model displays a confined phase only for Z4. This 
supports the idea that topological structures are essential to confinement. 

3. Duality 

Since its initial application to the Ising model [12], the concept of duality in 
statistical models has provided considerable insight into various phase structures. 
The thermodynamic function of a model may often be mapped onto those of the 
same or a related model with different coupling constants. Thus singularities either 
occur in corresponding pairs or are restricted to special "self-dual" values of the 
parameters.  

The duality relations are particularly simple for the generalized Z o models 
considered here. Indeed, the inclusion of multiple couplings actually clarifies the 
structure of the transformation.  Although we are working in the context of four- 
dimensional gauge theories, the duality results are identical for two-dimensional 
nearest neighbor spin systems. In this sense, this section merely reviews known 
results [3]. 

We begin with the character expansion in eq. (2.13), 

eS: .l~l = y. x~g".  (2.13) 
e l  

Inserting this expansion for each plaquette into the full path integral gives 

where the innermost product is over  the six plaquettes containing the link i/. The 
sum over  the g~i is immediate with eq. (2.9): 

Z = ( ~ ) x , , , ~ ( p 6 ~ L  , ,  . , ) ,  (3.2) 
n!£ { / i }  " ~ 

where the Kronecker  delta is understood modulo p in its indices. The factor of p 
multiplying the 8 term occurs because we have not normalized our sums over group 
elements. We now wish to make an appropriate  change of variables and do some 
of the sums using the Kronecker  delta functions. 

The factor 
6~.~ -, ,~.,). (3.3) 

involves the six plaquettes in which link i[ lies. The key to simplifying this object 
is to go to the dual lattice. The sites of the dual lattice lie in the centers of the 
hypercubes of our original lattice. Labeling the new sites by t~ we have for the 
physical coordinates 

x . d )  " ' = x ,  (z) + ~a, (3.4) 
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for all components/z.  To the various geometrical constructs on the original lattice 

such as site, link, plaquette, cube or hypercube there is a one-to-one correspondence 

with a hypercube, cube, plaquette, link or site, respectively, on the dual lattice. 
For example, dual to a link is the cube representing the common boundary of the 

two hypercubes dual to the ends of the link. Furthermore, the duality mapping can 
carry orientations if we invent a four-dimensional "left" hand rule. For example, 
for the dual of a link in the +t direction, one has a three-dimensional cube in x, 
y, z space and one could then orient all plaquettes on its surface to the left when 
viewed from its center. For other directions one should consider even permutations 

of the indices x y z  and t. The dual of a plaquette is another plaquette, common to 
the four cubes which are dual to the links of the original plaquette. The orientation 

is specified by the above mapping for any one of the four links. 
The utility of duality in the Zp problem begins to appear with the observation 

that the six plaquettes in eq. (3.3), are dual to a set of six plaquettes forming the 
three-dimensional cube dual to the link ij. On the dual lattice, our partition function 
is a sum over integers associated with each plaquette but subject to the constraint 
that the sum of the variables over any three-dimensional cube is zero modulo p, 
where these plaquettes are oriented with the appropriate handed rule. Our next 

step is to solve this constraint. 
If each of these plaquette variables were itself a modulo p sum of integers on 

the links of the dual lattice, then this constraint would be automatic. In this case 
each link occurs twice, once in each orientation, in forming the cube variable. 

Remarkably, this solution to the constraint condition is unique up to gauge transfor- 
mations. To see this, go to a completely fixed gauge, i.e., set the dual link variables 

to zero on a maximal tree of links which contains no closed loops. Any unfixed 
link must then form a unique closed loop with some set of fixed links. This link is 

then set, modulo p, to the sum of the plaquette variables on any two-dimensional 
surface with this loop as its boundary. The constraint condition on the cubes permits 
this surface to be deformed and thus assures the uniqueness of the solution 

N 4  
procedure. If we now undo the gauge fixing, we must divide by a factor of p 
gauge equivalent configurations. This process eliminates the 6-function in eq. (3.2) 
and replaces the sum over plaquette variables with one over (dual) link variables: 

Z =paN" ~ i-i x,u" (3.5) 
ni i  

Here nLz is the modulo p sum of the ni~ around the dual plaquette. We now identify 

ni-- with an element of Z 0, 

Uzj = e 2"i"'-/° , (3.6) 

and do a character expansion for xn, 

x-L = P-1/2 eg.,~u :~ = P 1/2 y. ~ U ~ ,  (3.7) 
n 
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where this defines the dual action SD(ULI). In terms of these new variables we 
reproduce the original partition function but with a new set of parameters  .~, : 

Z ( x )  = Z ( £ ) .  (3.8) 

The connection between x and £ is simply a linear transformation 

£ ,  = A , , , x , ,  , x ,  = A +,.~,, , (3.9) 

where A is the unitary matrix which generates discrete Fourier transforms 

A, , ,  =p-1/2  e2,,i,,,/p. (3.10) 

This has the propert ies 

A -1 = A  ~ , (3.11) 

A = A  T , (3.12) 

(A 2),,, = &,.p__,, (3.13) 

A 4 = I ,  (3.14) 

which follow directly from eq. (3.10). Eq. (3.8) is the key consequence of duality 
for this model. 

The criterion of orientation invariance of eq. (2.15) automatically carries over 
to the dual variables. Note, however,  that duality does not always result in a 
physically relevant model. If any of the x, are negative, one cannot interpret them 
as Boltzmann weights via eq. (3.7). For those domains of the parameter  space 
which are dual to another  sensible model, eq. (3.8) gives an interesting constraint 
on the singularities in the partition function. These must either appear  in pairs, 
dual to each other, or must occur at self-dual points where £ =x.  We will see 

examples of both these cases. 
We now investigate the size of the self-dual space. Thus we are interested in the 

unit eigenvalues of the matrix A, 

x = ;  = A x .  (3.15) 

Eq. (3.14) implies that all eigenvalues of A lie in the set Z4 --- {± 1, ±i}. The dimension 
of the self-dual space is the number  of independent eigenvectors of eigenvalue + 1, 
and is given by 

n÷~ =[~p]+  1, (3.16) 

where [3:] represents the greatest integer less than or equal to y. If we recall that 
the thermodynamics  is a function of the x~ only in a projective sense, then one of 
these dimensions is an overall scale factor. Thus the physical Z2 and Z3 theories 
should have a self-dual point, Z4, Zs, Z6, and Z7 should have a one-paramete r  
self-dual curve, and so forth. 
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Differentiat ing the parti t ion funct ion gives the rmodynamica l  quanti t ies such as 

the average plaquet te  in various representat ions  

po=<u j>= °xmF 
0/3, " '  (3.17) 

where 

F = ( 1 / 6 N  4) l o g Z ,  (3.18) 

0 
F,, = F .  (3.19) 

Oxm 
From eq. (2.14) we calculate 

0xm 
= x,  , , ,  (3.20) 

0/3, 
so that 

P ,  = ~ x~ _inF,,. (3.21) 
n l  

In Fourier  space this convolut ion becomes  a product  giving the al ternative form 

P,, = Y. A , , , . ~ F , ,  (J?) , (3.22) 
m 

where 

0xn 
Fm (£) = ~ F ,  (x) = A ~,,F, (x) .  (3.23) 

If we now restrict ourselves to the self-dual surface x = £, and assume that we are 

away f rom a first-order transition, then eq. (3.23) imposes a non-trivial constraint.  
Indeed,  F,, must  itself be an e igenvector  of  A with unit eigenvalues. To count  the 

number  of independent  constraints first note  that  condit ion (2.11) or  (2.15) requires 

F ,  = F o_. ,  (3.24) 

which in turn implies 

F = A 2 F .  (3.25) 

Thus eq. (3.23) implies one independent  constraint  for each time - 1 is an eigenvalue 
of A. This gives 

n - i  = [ ~ ]  +1  (3.26) 

conditions. 

4. Specific cases 

Using Monte  Carlo methods  we have studied the phase d iagram for several of 
these models.  We use a heat  bath algori thm as described in ref. [8]. Initial studies 
were on a small lattice of 4 4 sites and regions with s tructure were then analyzed 
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in more  detail on lattices of up to 64 sites. Boundary  condit ions were always periodic 

to minimize surface effects. 

4.1. Z2 AND Z3 

These  models  each have only one non-trivial  coupling. For  Z2 previous analysis 

[8] showed a single first-order transit ion at the self-dual point  

/31 = 2 t log (1 + ~/2) = 0.44 . . . .  (4.1) 

This model  has a symmetr ic  structure at negative/3. 
For  Z3 the above analysis [8] also found a first-order transition at the self-dual 

point  

/31 =/32 = ~ In {1 + 4 3 )  = 0.335 . . . .  (4.2) 

For  negative /3 this model  in principle presents a new domain  as ( - 1 )  is not  an 
e lement  of the gauge group.  This region appears  to be devoid of any new phase 

transition. In fig. 1 we show the results of a hysteresis cycle on the negative-fl  Z3 

model.  

4.2. Z4 

At the level of Z4 we obtain a model  with two non-trivial  couplings beyond  the 

scale/3o: 

St ,(g} = / 3 o + / 3 1 ( g  + g * )  +/3~g2. (4.3) 

The  Wilson Z4 model  considers/32 -- 0 and exhibits [8] a first-order transit ion at 

131 -- ½ log (1 + ~/2). (4.4) 

- 0 . 8  -0 .6  - 0 . 4  - 0 . 2  0.0 
0.0 l I I l 

~x  

x. x 

x~  x 

. . x x x ~ x x x x ~ X  x ~ x  x ~  ~x ~10~ xxX 

1 1 I I 

0.5 

Fig. 1. A thermal cycle on the Z~ model at negative coupling. The crosses represent decreasing B2 and 
the circles, increasing. 



158 

The  p a r a m e t e r s  x are 

Dual i ty  reads 
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Xo = ¼ee"(e 2B'+~ + 2  e e~ + e - Z e ' + ~ ) ,  

X 1 = X  3 ~--- -14 eZ"(e 2s'+z~ - e  2B~.e~), 

x2 = k eB"(e 2B' *o., _ 2 e t3~ + e-2~'  + ~ ) .  

£o = ½(Xo + 2 x l  + Xz) ,  

£1 = ~(Xo-X2), 

£2 = ½(Xo- 2xl + x 2 ) .  

Impos ing  self-duali ty,  we find only a single equat ion,  

Xo = 2Xl + x 2 ,  

which in t e rms  of/3~ and/32 reads 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

/32 -- -~  log sinh 2/3t . (4.12) 

The  self-dual line starts  at/32 = co when/31 = 0 and extends  toward  the asympto t ic  
fo rm/32  = - / 3 a  a s / 3 1 ~ o o .  We  will see that  only a por t ion  of this line represents  a 
f i rs t -order  t ransi t ion in the model .  E lsewhere  on this line we have the constraint  
on the expecta t ion  

F0 = 2F1 = F 2 ,  (4.13) 

where  Fo, F1 and F2 are related to the expec ta t ion  of g:l by 

1 (gO) = 1 = ~(xoF0 + 2x 1F1 + XEF2) , (4.14) 

(g I ) = P1 = ](xoF0 - x2F2) , (4.15) 

1 (g2j) = P2 = 4(xc~F(,- 2xlF1 +xzF2)  • (4.16) 

A little a lgebra  yields the duality constraint  

1 ( tania/31l ) - -  ) P l - 2 t a n h / 3 1 + ½ P 2  2 t a n h O l  (4.17) 

where/32 is de t e rmined  by eq. (4.12). 
The  model  has several  limits where  it reduces  to the Z2 theory.  The  axis/31 = 0 

represents  a double  cover ing of Z2. Thus  we conclude that  there  are two f i rs t -order  
t ransi t ions at /31 = 0  and /32 = +~ log  (1 +x/2). As we take  /32 to infinity, we drive 
all p laquet tes  to real values. U p  to a possible gauge rotat ion,  all links are then in 
the set Z2. Thus  we expect  ano the r  f i rs t -order  t ransi t ion line to e m e r g e  f rom 32 = co, 
/3~ = +~ log (1 + x/2). The  ext ra  factor  of two is because/3~ =/33 and bo th  couplings 
contr ibute .  U n d e r  duality,  this transit ion maps  into the one on the posit ive/32 axis. 
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1.2 L '  tu B ~ i i I I 1 

/ 

0.8 self dual l ine 

0.4 ~ B i  

B2 0 0 ~ . ~ . ' - - -  - - - . . .  ~ D 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Bi 

Fig. 2. The phase diagram for the generalized Z4 model. The bold curves represent phase transition 
lines. The various other lines are discussed in the text. 

The group Z4 contains the element - 1  so we have a symmetry of the phase 
diagram under /31~-/3] ,  /32~/32. Because of this we need only investigate the 
positive/3~ half plane. 

We first performed simulations of rapid thermal cycles at fixed/3t or fixed/32 to 
find the rough structures of phase diagrams. We measured both P] and P2 defined 
in eqs. (4.15) and (4.16). Then the regions where we observed the hysteresis loops 
were studied carefully by the thermal cycle and by measuring/3](/32) as a function 
of P~(P2). First-order lines are distinguished from second-order transitions by 
measuring the latent heat at various points along the line starting from ordered 
and disordered initial configurations. In fig. 2 we show the phase diagram of the 
theory in the/3~,/32 plane. The lines AC, BC, CD and HI are first-order transitions. 
DF and DG are second-order lines. In the graph, we also plot the self-dual line 
(4.12) and the line defined by 

/32 = -½ log cosh 2/31 (4.18) 

Eq. (4.18) is shown by the dotted line. Below this curve the dual Boltzmann weight 
of eq. (4.7) becomes negative and duality gives no information. The region above 
the self-dual line is dually related to the region between the self-dual line, the line 
in eq. (4.18), and the positive/32 axis. The curve CD is on the self-dual line. The 
lines BC and DF are related to the lines AC and DE, respectively. EG and HI are 
below/32 of eq. (4.18) so that they do not have dual partners. The first-order line 
CD divides into two second-order lines below the/3] axis. The theory appears to 
have a spin wave phase R enclosed by these two lines. An interesting monitor in 
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0.5 

X 

I I I I I I 

Bi=I.3 

0 • i i  0 

0 . 0  - -  o o o o o o  

I l I I I I 
-0.7 -0 .8  -0.9 -1.0 - I . I  -1.2 

Be 

Fig. 3. The ratio X of eq. (4.19) for the Z4 theory is a function of/32 at/3't = 1.3. 
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Fig. 4. Three Monte Carlo runs at the triple point C. The triangles represent an ordered start, the solid 
circles, a random start and the open circles, a random Z2 start. 
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this region is the ratio of Wilson loops 

W(2, 2)W(1,  1)  
X = W(2, 1)W(1, 2 ) '  (4.19) 

which is shown in fig. 3. We observe three qualitatively different behaviors of X 
in the regions divided by two lines DF and DG. We will see further evidence for 
this Coulomb phase when we discuss large/3. At the triple point C we performed 
three runs of two hundred iterations on a 64 lattice (fig. 4). The initial conditions 
are: (1) ordered with every Uu = 1 (solid circles); (2) each U u selected totally 
randomly from Z4 (triangles); (3) each Uu chosen randomly from Z2 (open circles). 
The system has three distinct stable phases at this point in coupling space. In 
particular the open circles represent the mixed phase where the fundamental action 
is disordered and the adjoint action is ordered. Repeating this "experiment" at 
self-dual points closer to the Ports line/32 =/31 indicated only two stable phases. 
Thus we conclude that the triple point lies away from the gauge-Ports model. 

Finally we examine the constraint (4.17) on the self-dual line. Figs. 5a and b 
show P1 and P2 as functions of/31. /32 is determined by eq. (4.12). In fig. 5a we 

1.0 I I I I 1 I ! 1 

Pl  0 . 5  

PZ 0.5 

XXXx I 
x XXxxx XXx Xx x xxx~X~xXx ~'cxX yXXxXxx 

o °o 

X ~° o• • • o • • _J 

5 •  

~t 
X x 

oX 
X 

o.o / :  ...... 

• • 
• o •  

o •  

o •  o o •  • o  
° ' * o • •  • • 

• o  Q B O OQ Q 

0 . 0  1 I 1 1 l 1 1 I I 
0 0.5 1.0 

/3' I 
Fig. 5. Testing eq. (4.17) along the self-dual line. The crosses are the measured values for PI and the 
solid points the measured P2 and the predicted PI. Where the prediction fails we have a first-order 

transition on the self-dual line. 
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show both the experimental  values of P~ (solid circles) and the values calculated 
from the observed P2 and eq. (4.17) (crosses). Except on the first-order line CD 
these two points coincide very well. These data further support  the existence of 
triple point D. 

4.3. Zs 

This theory also has two non-trivial couplings beyond the scale/3o: 

SD(g)  = flo + f l l (g  + g * )  + / 3 2 ( g  2 + g,2) .  (4.20) 

Since e 2"~/5 and its square e 4"~/5 both generate the whole group, the thermodynamics  
of the model is symmetric under interchange of fll and/32. 

The Wilson Z5 model (f12 = 0) exhibits two second-order  transitions near 

/31 = 1.0 and 1.2. (4.21) 

The parameters  x are 

Xo = .~ eO"[e  2t~'* 2/32 + 2 e 2c'01 +2c2~2 + 2 e 2c2B' ' 2Cl/32 ] ,  (4.22) 

X l = ~ eBO[e 2B;~ 2t32 + 2 c l  e 2clBt*2c2t32 + 2c2  e 2c2~ ' '2c 'B2]  , ( 4 . 2 3 )  

X 2  = 1 et3.[c2/31÷202 + 2 c 2  e 2' '/3'÷2c2B2 + 2 c l  e2C2/3'-2c't32] , ( 4 . 2 4 )  

4 where cl = cos 2rr and c2 = cos gTr. Duality reads 

;0 = 4~(Xo 4- 2xl + 2x2), (4.25) 

T 
£1 = ~/.~(xo+ 2 c l x l  + 2 c 2 x 2 ) ,  (4.26) 

£2 = ~/~(xo + 2C 2X a + 2C aX2) . (4.27) 

Self-duality imposes a single relation among the x, 

xo = - 2 c 2 ( x  1 + x2), (4.28) 

which in terms of/31 and 132 reads 

f12 = -/31 +~[ln (1 + 4 5 ) + 1 n  cosh ½4-5(/31-/32)]. (4.29) 

As mentioned above, the theory is symmetric under the exchange/3t ' ," ,flz;  so, we 
only consider f l1>/32.  The self-dual line starts out / 3 a = / 3 2 = ~ l n ( l + , J - g )  and 
extends toward the asymptotic form f12 = [(c~-  1)/(1-c2)]B1 as fl~-~ oo. As in the 
Z4 case we will see that a part of this line represents a first-order transition. The 
special line defined by x2 = 0 reads, in terms of fit and fiE, as 

/32 = -/31 +2 In [45 sinh ½x/5(flx-/32) +cosh ½x/5(fl 1 -/32)].  (4.30) 

In fig. 6 we show the result of our simulations. The lines AB and EF are first-order 
transitions. BC and BE appear  to be second-order  lines. The line E G  is first-order 
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Fig. 6. The Zs phase diagram. The bold curves represent phase transition lines. 
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near point E but it is difficult to distinguish whether the transition remains so as 
we go to the left towards G. The line BE becomes difficult to detect by thermal 
cycle as B2 becomes more negative. To enhance the transition we again turned to 
ratios of Wilson loops as in eq. (4.19). As an example we show in fig. 7 the result 
with fixed f12 = -0.3.  The region R is the spin wave phase. 

The line AB is self-dual. Line BC is dually related to the line BD. The lines DE 
and FG are below the X2 = 0 line so that they do not have dual partners. 
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Fig. 7. The X ratio of eq. (4.19} for the Z5 model along the line B2 = -0.3. 
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4.4. LIMITING CASES 

In this subsection we consider the limiting models mentioned in sect. 2. For every 
p there is a single line in the coupling constant space on which the theory reduces 
to the Potts model [eq. (2.19)]. For example,  in p -=4 and 5, this line is given by 
/32 =/3t. On this line the action St~(g) with g ~ 1 has the same value. The gauge-Potts  
model was studied in ref. [10] and has one first-order transition on the positive/3 
axis. For Z4 and Z5 this transition corresponds to the points J in fig. 2 and A in 
fig. 6. 

Next we consider the restricted model defined in eq. (2.20). To  obtain this model 
from the generalized Zp theory it is sufficient to retain the first two non-trivial 
coupling constants 

2~- 4~r 
So( i )=/3~cos- - i+/3aCos-- i ,  O~i<~p-1  (4.31) 

P P 

[/3i in eq. (4.31) differs from /L in eqs. (4.3) and (4.20) by a scale factor]. In eq. 
(4.31) we put 

1 - cos (2rr/p) 
/32 = /31 +/3, (4.32) 

1 - cos (4rr/p) 

and let/31 ~ oo. In this limit eq. (4.31) reduces to 

eS°ti~= ~l . . . .  ~4,~/~0, i = l a n d p - I  , (4.33) 

/ 0 ,  otherwise.  

In fig. 8 we show the result of the rapid thermal cycle for p = 4. The vertical axis 
is the expectation values of P2 = (cos (4rri/p)). We observe three phase transitions. 

t 0.4 ~ . . . . .  

-0.4 - ~ i " ' "  
-0.8 

t t ~ 
1.0 0.5 0.0 -0.5 

(I-cos -~) B 

Fig. 8. A thermal cycle on the restricted Z4 model discussed in the text. Note the appearance of four 
distinct phases. 
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Fig. 9. A thermal cycle on the restricted Z5 model. Here only three phases appear. 
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The first two transitions are second order and the last one is first order. This is 
consistent with the phase diagram shown in fig. 2. Fig. 8 further confirms the 
bifurcation at point D in the latter figure. 

For p ~> 5 there are only two phase transitions. One is second order and the other 
one is first order. It is interesting to note that the critical coupling/3c scales quite 
accurately l i ke /~c -  1/(1 - c o s  (41r/p)); in other words, (1 - c o s  (4zr/p))/~c is almost 
constant for p />5.  In figs. 9 and 10 we show the results of p --- 5 and 8. Note that 
only in the p = 4  case does any remnant  of the confining phase persist in this 
restricted limit. 
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Fig. 10. A thermal cycle on the restricted Z8 model. Note the similar i ty to fig. 9. 
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Note added in proof: After completion of this work we received preprints detailing 
similar results from F. Alcaraz and L. Jacobs and from M. Fukugita, T. Kaneko, 
and M. Kobayashi, Nucl. Phys. B215 [FS7] (1983) 289. 
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